

 Linux Kernel

 # TDXAISD-102

 ThriveDX Linux Kernel

Time Commitment

5 days (total of 40
hours / 8 hours per day)

Skill Level

Professional Level

Course Category

AI | Software Development

This Linux kernel is now the most widely used operating system on the planet and many development

teams need to know how to add device support to it, understand it’s performance characteristics, tune it,

compile it, reduce it’s size, provide board support for it, develop platforms based on it, understand it’s real

time support and much more.

Prerequisites

No kernel prior knowledge is required but knowledge of Linux user space API and programming tools is

required.

Objectives

This course is all about the Linux kernel but is focused on writing device drivers for the kernel as this is the

first typical thing one learns when becoming a kernel developer.

Program Structure
Linux Kernel Introduction Module 01

 System and kernel overview

 Kernel code specifics

 Kernel subsystems

 History and versioning scheme

 Understanding the development process

 Specific legal issues

 Kernel user interface

Kernel Sources Module 02

 Getting the sources

 Using the patch command

 Structure of source files

 Kernel source code browsers

Compiling Module 03

 Kernel configuration

 Useful settings for embedded systems

 Compiling

 Generated files

 Make commands for configuring, compiling or installing a kernel

Booting Module 04

 Linux system booting overview

 The boot-loader’s job

 Review of Linux boot-loaders

 U-boot details

 Linux kernel booting

 Advantages of initramfs over initrd

 Booting parameters

 NFS boot example

 System startup

Cross-compiling Module 05

 Kernel cross-compiling setup

 Ready-made configuration files for specific architectures & boards

 Cross-compiling

Basic Driver Development Module 06

 Linux device drivers

 A simple module

 Programming constraints

 Loading, unloading modules

 Module parameters and dependencies

 Adding sources to the kernel tree

Linux Memory Management Module 07

 Linux memory management

 Physical and virtual (kernel and user) address spaces

 Linux memory management implementation

 Allocating with kmalloc, by pages and with vmalloc

I/O Memory Module 08

 I/O register and memory range registration

 I/O register and memory access

 Read / write memory barriers

Character Drivers Module 09

 Device numbers

 Getting free device numbers

 File operations

 Character driver registration

Kernel Debugging Module 10

 Using printk, /proc or /sys

 Debugfs

 Using an ioctl interface, gdb and kgdb

Processes and scheduling Module 11

 Process life

 Timer frequency

 Priorities and timeslices

 Sleeping and waking up API

Interrupts Module 12

 Waiting for the availability of resources

 Interrupt handler registration

 Scheduling deferred work

Concurrency management Module 13

 Managing concurrent access to resources: mutexes, spinlocks

 Atomic operations

Advice and resources Module 14

 Getting help and contributions

 Bug report and patch submission to Linux developers

 References: websites, books & international conferences

Kernel boot-up details Module 14

 Detailed description of the kernel boot-up process, from execution by the boot-loader to the

execution of the first userspace program

 Initcalls: how to register your own initialization routines?

Introduction to BSP development Module 15

 Board Support Packages (BSP)

 Porting U-boot and the Linux kernel

 Creating board dependent code

 Studying code for an ARM board

Introduction to power management Module 16

 Supporting frequency scaling

 CPU and board specific power management

 Power management in device drivers

 Control from user space

 Saving power in the idle loop

 Studying power management implementations in the Linux kernel

Introduction to Linux Real-Time Programming Module 17

 Understanding the sources of latency in standard Linux

 Soft real-time solutions for Linux: improvements in Linux 2.6

 Use the latest RT preempt patches for mainstream Linux

 Real-time kernel debugging

 Measuring and analyzing latency

 Hard real-time solutions for Linux

 RTLinux issues, the RTAI and Xenomai projects

 Comparing with RT preempt patches

 Real-time offerings from commercial Linux vendors: MontaVista, TimeSys, Wind River,

LynuxWorks etc.

C library and cross-compiling tool-chain Module 18

 Choosing the target C library

 Ready to use cross-compiling tool-chains

 Building a cross-compiling tool-chain with automated tools

 Installing cross-compiled libraries in the root filesystem

Embedded system development tools Module 19

 Commercial toolsets and distributions

 Community toolsets (focus on Buildroot & Scratchbox)

 How to find existing Free Software for a particular need

BusyBox Module 20

 Detailed Overview and features

 Configuration, compiling and deploying

 Saving space by implementing your own applets

Lightweight tools for embedded systems Module 21

 HTTP and ssh servers

 Graphical toolkits

 Web browsers

 Text editors

 Precompiled packages and distributions

Choosing file-systems Module 22

 File-systems for block devices

 Usefulness of journaled filesystems

 Read-only block file-systems

 RAM file-systems

 File-systems for Memory Technology Devices (MTD)

 Suggestions for embedded systems

Udev and hot-plugging Module 23

 Handling hardware events from userspace

 Creating and removing device files

 Identifying drivers, notifying programs and users

