

 Extreme Java Programming
BT123

40 hours

Course Outline:

When Java programmers wish to achieve deeper knowledge of the language, two

options are available:

 deep dive into the java programing language

 deep dive into the java runtime

This course is a deep dive into the runtime of the java application – where developers

learn how their code is materialized and executed on the target machine. This raises

the level of understanding – how multi-threaded programming works, how GC is

effected by the code, reflection, performance impact, profiling – and language

patterns to be used for each topic.

Upon completion of the course, developers will have deeper understanding of the

execution environment and will know what kind of Java programming language

constructs to use.

Who should attend the course:

Java developers with moderate experience.

Prerequisites:

Java programming.

Course Contents:

Module 1 - Multi-threading programming

 Parallel execution vs. concurrent execution

 The problems set of multi-threading programming

 Even more problems with the introduction of

 Multi core CPU

 L1 L2 L3 caches

 Cross process, Cross node.

Module 2 - Threads Synchronization

 The problem: when threads operate on class members of the same class

 The standard solution: synchronization

 Types of synchronizations

 internal on this, internal on object, external

 The modern soliton: explicit Locks

 Standard lock, read lock, write lock, XXX

Module 3 - Threads coordination

 The problem: how to coordinate the execution of threads

 The must know: wait notify join

 Advanced thread coordination abstracts to the rescue

 Pitfalls to watch when programming threads coordination

Module 4 - Threads communication

 The problem: do threads see

 Java memory model: the (mostly) unknown factor

 Synchronized to the rescue

 Or is it volatile to the rescue

Module 5 - JRE internals

 Where is my data? Heap VS. Off heap VS. stack

 Where is my code? Interpreted code, compiled code, just in time

 Is really my code that is running? runtime optimizations general discussion

 Where is my code really running?

 Java stack VS. OS stack

 multi core and core affinity

 How my code is organized @runtime?

 class loaders, manipulating class loaders

 How to package my code? Jars in wars VS. jars outside wars

 class meta data && reflection

 Java 9 modularization (hell or bless?)

Module 6 - Garbage Collection

 Basics: why to GC , how to GC – general approach

 Different strategies of garbage collections

 Performance considerations

 Writing garbage collection friendly code

Module 7 - Profiling the runtime

 Why should I profile?

 Which approach? Sampling VS profiling

 What support is there? Profiling support on the JRE over the Java versions

 Heap analysis

 Threads analysis

 Other aspects to check

 From Jconsole to jvisualvm to flight control

Module 8 - Spring

 Why is it that Spring VS JEE

 Dependency Injection as enforcement of code modularization

 The power of templates (jdbc, soap, rest, activeDirectory etc)

 The singleton concept, and the impact on multi-threading programming

